
Blazor State Management
Managing User Data Across Client and Server

Tim Purdum

DevUp Conf

August, 2025



• Identify types of state management in Blazor and the tools and patterns used

• Learn about how the Blazor rendering modes and render cycles impact state 
management

• Identify larger architectural patterns and practical examples for managing 
state in a Blazor application

Goals of the Session



• Modern full-stack web framework

• Built on Asp.NET Core and Modern 
.NET

• Released with .NET Core 3.1 in 2018

• Component-based reactive framework

• Static and dynamic Server-Side 
rendering

• Client WebAssembly SPA applications 
or individual components

• High productivity with a single unifying 
language and framework

What is Blazor?



Bl  zing 
Shipments

As we look at this web app, consider the following questions:

• Where are the pages being rendered?

• How does it know what data to load?

• Are the pages comprised of a single component, or many?

• How does the site respond to user interaction?

• If we needed to store data, where would we store it?



What is State Management?

• “State management refers to the management of the state of 
one or more user interface controls such as text fields, 
submit buttons, radio buttons, etc. in a graphical user 
interface.” 

• from Wikipedia (based on redux.js.org)



Types of State in Web Development

• Component State

• Application State

• User/Session State 

• Persistent State



Component State

• Stored in component fields/properties or a model object

• Bound to HTML input and display elements

• Unsaved changes are lost on navigation/refresh

<p role="status">Current count: @currentCount</p>

<button class="btn btn-primary" 

        @onclick="IncrementCount">Click me</button>

@code {

  private int currentCount = 0;

  private void IncrementCount() => currentCount++;

}



• C ustom  razor syntax for binding

• fires with the onchange event

• Change the event with

• Add a change handler method with

• For Razor C om ponents, the syntax changes to bind to 

param eters: 

Component State

<input type="text" @bind="fieldOrProp" />

@bind:event="oninput"

@bind:after="HandlerMethod"

<TestComponent @bind-ParameterName="fieldOrProp" />



Application State

• State shared across components using

• Parameters

• CascadingValues

• EventCallbacks

• Service Classes



• C# public properties with [Parameter] attribute on a child component

• In consuming (parent) class markup, parameters display like HTML attributes 
with capital letters 

Application State: Parameters

MapView.razor

/// <summary>
///     The Latitude for the Center 
point of the view
/// </summary>
[Parameter]
public double? Latitude { get; set; }

/// <summary>
///     The Longitude for the Center 
point of the view
/// </summary>
[Parameter]
public double? Longitude { get; set; }

<MapView Latitude="@shipment.Latitude" Longitude="@shipment.Longitude">
    <Map>
        <Basemap>
            <BasemapStyle Name="BasemapStyleName.ArcgisStreets"/>
        </Basemap>
    </Map>
</MapView>

MapView.razor

[Parameter]
public double? Latitude { get; set; }

[Parameter]
public double? Longitude { get; set; }



• Wrap child components with markup tags

• A ll descendant com ponents can receive the values as 
properties w ith the [C ascadingt aram eter] attribute 

Application State: Cascading Values

<CascadingValue Value=" @User" Name="CurrentUser">
    <ProfileSelector />
</CascadingValue>

[CascadingParameter(Name="CurrentUser")]
public ApplicationUser? CurrentUser { get; set; }



• A type of Parameter

• Async-supporting Event triggers

• Bind to a parent component method instead of field or property

Application State: EventCallbacks

[Parameter]
public EventCallback<LayerViewCreateEvent> OnLayerViewCreate { get; set; }

<MapView  OnLayerViewCreate="OnLayerViewCreate">
    <Map>
        <FeatureLayer OutFields="@(["*"])">
            <PortalItem PortalItemId="234d2e3f6f554e0e84757662469c26d3" />
        </FeatureLayer>
    </Map>
    </Extent>
</ MapView>

private async Task OnLayerViewCreate(LayerViewCreateEvent createEvent)
{
    if (createEvent.Layer is FeatureLayer)
    {
        // query the feature service
    }
}



• Any C# Class can be injected via Property Injection

• In Razor Markup

• Or in C#

• A llow s offl oading State a anagem ent logic from  t ages and C om ponents

• Share state betw een C om ponents

• Use traditional .NET events/EventH andlers to notify different 
com ponents about changes

Application State: Service Classes

@code {
[Inject]

private StateManagementService? StateManager { get; set; }
}

@page "/order"
@inject StateManagementService StateManagementService



User/Session State

• Authentication

• Authorization

• Profile

• Records

• Work Progress



User/Session State

• Browser Persistence

• Query String https://blazingshipments.com?id=12345

• Tokens

• Cookies

• localStorage

• sessionStorage

• indexedDb

• Server Persistence

• Persistent Cache (e.g., Redis)

• Database



• localStorage
• persists when tab/browser is closed, across multiple 

tabs

• sessionStorage
• isolates data between tabs to prevent issues, data 

also is lost when tab is closed

• IndexedDb
• Object-store structured database
• Create an object store with a key path (aka ID) or a 

key generator
• Also supports indexes
• Transaction-scoped access: add, put (update), get, 

delete

• All require JavaScript or NuGet JS wrappers to interact.

• AvailaNle in “Hnteractive Render Modes”

Persistent State: Browser Storage



•MemoryCache

• Redis cache

• HybridCache

• Database

• Only availaNle from “Hnteractive Server” or via 
web API calls.

Persistent State: Server Storage



• Static Server a ode

• Interactive Server a ode

• Interactive W ebA ssem bly a ode

• Interactive A uto a ode

• . lazor H ybrid

Blazor Render Modes



Blazor Render Modes: Static Server

• “Traditional” server-side web

• Only static HTML, CSS, and JS files

• Single-render and form post-backs

• No interactive updates via C# (can still use JS)

• Great for blog posts and simple forms

Server
(Asp.NET Core) Pages Components

Browser

Render

Get Request

Form Post

Serve   HTML



Blazor Render Modes: Interactive Server

• Continuous websocket 
connection with SignalR

• Fast on first load

• Live data-binding, real-time 
updates, JavaScript interop

• Direct access to server data 
store

Server
(Asp.NET Core) Pages Components

Browser

SignalR 2-way Communication



Blazor Render Modes: Interactive Server

• State Challenges

• Session reconnect

• Distributed sites

• Data size limits

• Network lag

Server
(Asp.NET Core) Pages Components

Browser

SignalR 2-way Communication



Blazor Render Modes: Interactive WebAssembly

• Runs in the client browser

• Large/slow first load

• Live data-binding, real-time 
updates, JavaScript interop

• HttpClient calls to communicate 
with server web API

Server
(Asp.NET Core) Pages Components

HttpClient Web API Calls

SignalR, gRPC

Download .NET Runtime

Client
(WebAssembly)

• Single-threaded

• Fast interactions after load

• Closest in approach to most 
JS SPA frameworks



• State Challenges 

• Data sync

• New data object IDs before syncing
• (Use Guids) 

Blazor Render Modes: Interactive WebAssembly

Server
(Asp.NET Core) Pages Components

Web API Call

Download .NET Runtime

Client
(wasm)



Blazor Render Modes: Interactive Auto

• On first load, runs Interactive Server (SignalR) 

• Downloads .NET runtime and client Wasm code 
in the background

• On next load, switches to running from 
WebAssembly

• “Best of Noth Rorlds”

• Fast start on first load (server)

• More responsive and robust interactions 
(client)

• Requires flexible data handling/abstraction to 
handle both client and server modes



Razor Component Lifecycle: Static Server Mode

Parent
Renders

First Render

Property Injection

OnInitialized(Async)

Render

OnParametersSet(Async)

Subsequent

Renders

DOM
Updates

Does not   await

Form Post or Navigation

State set in OnInitialized and OnParametersSet should be Idempotent



Razor Component Lifecycle: Interactive Modes

Parent
Renders

First Render

Property Injection

OnInitialized(Async)

Render

OnParametersSet(Async)

Subsequent

Renders

OnAfterRender(Async)

DOM
Events

DOM
Updates

Does not   await

Bind to
Events

Don’t set state that Rill cause a render cycle in OnAfterRender!



• S om e fram ew orks encourage you to m anage state in a 
specific pattern

• React – Flux/Redux/a VU

• XA a L  Fram ew orks – a VVa

• A sp.NET C ore a VC  – … a VC

• . lazor does not have a "default" nam ed architectural 
pattern, but the decisions w e m ake still im pact how  w e 
m anage the user and application state

Architectural Patterns for State Management



• Goals for Blazor State Management
• Flexible components that will work in both Interactive Server and 

Interactive WebAssembly modes

• Reduced boilerplate logic like pass-through methods 
• (e.g., clientComponent => clientService => webApi => webService => dataRepository)

• Consistent patterns for communication between components

• Abstract away communication from WebAssembly client to Server

• Keep pages and components lightweight and easy to read

• Allow generic implementations for simple use cases

Architectural Patterns for State Management



• Model

• View

• State Manager
• Model and View designed to work together 

with two-way binding

• Model can live in either the View or the State 

Manager class

• State Manager is responsible for abstracting 

transport and any data transformation

Architectural Patterns for State Management

MVSM











Review

 Core Concepts of State Management

• Definition: State management involves tracking the dynamic 

data of a user interface—across components, sessions, and 

storage layers.

• Types of State:

• Component State: Temporary, lost on refresh or 

navigation.

• Application State: Shared across components using 

cascading values, DI services, etc.

• User/Session State: Stored in browser memory (e.g., 

localStorage, sessionStorage, indexedDb), usually not 

synced with the server.

• Persistent State: Long-term data stored in a database 

or API.



Review
 Blazor Render Modes & Their State Implications

• Static Server Mode:

• Simple form submission and HTML rendering.

• Limited interactivity and no real-time state updates.

• Persistence tools: cookies, tokens, query strings.

• Interactive Server Mode:

• Real-time two-way binding using SignalR.

• Enables in-memory server-side tracking and real-time updates.

• Challenges: reconnection handling, distributed server sync.

• Interactive WebAssembly Mode:

• Fully client-side execution.

• Rich interactivity with flexible state control

• .Risks of state desynchronization and ID conflicts for new data.

• Interactive Auto Mode:

• Hybrid approach: server-rendered first load, client-side on reload.

• Balances fast startup with responsive interactivity.



Review
 Patterns for Binding & Application State Sharing

• Binding: 

• @bind, @bind:event, @bind:get/set, and @bind:after allow 

seamless two-way data binding in Razor.

• Component Communication:

• Parameters, CascadingValues, EventCallbacks, and DI 

Services are used to maintain shared state and coordination.

 Browser Storage Techniques

• localStorage and sessionStorage: 

• Simple key-value stores for persistence.

• IndexedDb: 

• Structured object store with indexing and transaction 

support. Can be wrapped with JS + C# logic or NuGet 

packages.



Review
 Architectural Patterns for Blazor

• MVU: Immutable, Redux-style, Nut not ideal for Blazor’s 

reactive capabilities.

• MVVM: Familiar in .NET Nut verNose; Blazor doesn’t require 

INotifyPropertyChanged.

• MVC: Suited for non-interactive, server-rendered apps—

less effective in Blazor.

 MVSM  – A Blazor-Centric Pattern

• Model-View-State Manager:

• Two-way binding between View and Model

• .State Manager handles all data transport, persistence, 

and API abstraction.

• Designed for extensibility using generics, reflection, 

and browser storage.



https://nation-finder.geoblazor.com

Find the country based on its outline



Thank you to our Sponsors!



Thank You!

Notes & Links @
https://timpurdum.dev


	Slide 1: Blazor State Management
	Slide 2: Goals of the Session
	Slide 3: What is Blazor?
	Slide 4: Bl  zing Shipments
	Slide 5: What is State Management?
	Slide 6: Types of State in Web Development
	Slide 7: Component State
	Slide 8: Component State
	Slide 9: Application State
	Slide 10: Application State: Parameters
	Slide 11: Application State: Cascading Values
	Slide 12: Application State: EventCallbacks
	Slide 13: Application State: Service Classes
	Slide 14: User/Session State
	Slide 15: User/Session State
	Slide 16: Persistent State: Browser Storage
	Slide 17: Persistent State: Server Storage
	Slide 18: Blazor Render Modes
	Slide 19: Blazor Render Modes: Static Server
	Slide 20: Blazor Render Modes: Interactive Server
	Slide 21: Blazor Render Modes: Interactive Server
	Slide 22: Blazor Render Modes: Interactive WebAssembly
	Slide 23: Blazor Render Modes: Interactive WebAssembly
	Slide 24
	Slide 25: Razor Component Lifecycle: Static Server Mode
	Slide 26: Razor Component Lifecycle: Interactive Modes
	Slide 27: Architectural Patterns for State Management
	Slide 28
	Slide 29: Architectural Patterns for State Management
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34: Review
	Slide 35: Review
	Slide 36: Review
	Slide 37: Review
	Slide 38: https://nation-finder.geoblazor.com
	Slide 39
	Slide 40: Thank You!  Notes & Links @ https://timpurdum.dev

