@ dymaptic

Blazor State Management

Managing User Data Across Client and Server
Tim Purdum

dev up_ | ; DevUp Conf
" | August, 2025

O N ®
.)) . Q State and Loca d
esrl rrrrrrrrrrrrrr N4 gggapg"”eéfm?“{e’ence Federal Small Business EIL ArcGis Hub w Nonprofit 2| Government OWNED
Gold % ward YVinner Specialty P Specialty Specialty Specialty

CERTIFIED BY | {550 sy rmemeese

Goals of the Session

* Identify types of state management in Blazor and the tools and patterns used

* Learn about how the Blazor rendering modes and render cycles impact state
management

* Identify larger architectural patterns and practical examples for managing
state in a Blazor application

What is Blazor?

 Modern full-stack web framework

* Built on Asp.NET Core and Modern
NET

* Released with .NET Core 3.1 in 2018
* Component-based reactive framework

* Static and dynamic Server-Side
rendering

* Client WebAssembly SPA applications
or individual components

* High productivity with a single unifying
language and framework

<UBlezing
Shipments

As we look at this web app, consider the following questions:
* Where are the pages being rendered?

* How does it know what data to load?
* Are the pages comprised of a single component, or many?
* How does the site respond to user interaction?

If we needed to store data, where would we store it?

What is State Management?

- “State management refers to the management of the state of
one or more user interface controls such as text fields,
submit buttons, radio buttons, etc. in a graphical user
interface.”

 from Wikipedia (based on redux.js.org)

Types of State in Web Development

* Component State
* Application State

» User/Session State
* Persistent State

Component State

* Stored in component fields/properties or a model object
* Bound to HTML input and display elements
* Unsaved changes are lost on navigation/refresh

p role="status">Current count: @currentCount</p
button class="btn btn-primary
@onclick="IncrementCount”>Click me</button

@code {

private int currentCount = 0;

private void IncrementCount() => currentCount++;

Component State
- /OO0 MO0 MO0mOm

<input type="text" @bind="fieldOrProp" />

* fires with the OUOMOO] event

. Change the event with @bind:event="oninput"

* Add a change handler method with @bind:after="HandlerMethod"
e AI0OwHTIO/ 00 000000 i Mo0on m omo o

OO0 O <TestComponent @bind-ParameterName="fieldOrProp" />

ddddd

Application State

 State shared across components using
* Parameters

* CascadingValues
 EventCallbacks
* Service Classes

dev up

Application State: Parameters

* C# public properties with [Parameter] attribute on a child component

MapView.razor

[Parameter]

? Latitude { get; set; }

[Parameter]
? Longitude { get; set; }

* |In consuming (parent) class markup, parameters display like HTML attributes
with capital letters

<MapView Latitude="@shipment.Latitude" Longitude="@shipment.Longitude">
<Map>
<Basemap>

<BasemapStyle Name="BasemapStyleName.ArcgisStreets"/>
</Basemap>
</Map>
</MapView>

ddddd

Application State: Cascading Values

* Wrap child components with markup tags

<CascadingValue Value=" @User" Name="CurrentUser">

<ProfileSelector />

</CascadingValue>

e | MO TIAO0T

1 00000

010

Lmooon

Ooomon o

Oyl

[

it L0

[CascadingParameter(Name="CurrentUser")]

ApplicationUser? CurrentUser { get; set; }

[

2|/ Application State: EventCallbacks

* A type of Parameter

* Async-supporting Event triggers

[Parameter]

public EventCallback<LayerViewCreateEvent> OnlLayerViewCreate { get; set; }
* Bind to a parent component method instead of field or property

<MapView OnlLayerViewCreate="OnLayerViewCreate">
<Map>
<FeatureLayer OutFields="@(["*"])">
<Portalltem Portalltemld="234d2e3f6f554e0e84757662469c26d3" />
</Featurelayer>

</Map> private async Task OnlLayerViewCreate(LayerViewCreateEvent createEvent)

</Extent> {
</ MapView> if (createEvent.Layer is Featurelayer)

{

// query the feature service

}
}

ddddd

Application State: Service Classes

* Any C# Class can be injected via Property Injection

* In Razor Markup &) ——
StateManagementService StateManagementService

100 0000 {0 a 000000 O00mom oo+ 0000 o0 7 00 00000
[OO 000 /00 00000

OMO00ID o¢ OO0 OO i OO0 om oo
0000 Oon0O ndoo

User/Session State

* Authentication
 Authorization
* Profile

* Records

* Work Progress

User/Session State

* Browser Persistence
* Query String https://blazingshipments.com?id=12345
* Tokens
* Cookies
* localStorage

* sessionStorage
* indexedDb

» Server Persistence
* Persistent Cache (e.g., Redis)
* Database

Persistent State: Browser Storage <

* localStorage ¥
. pebrsists when tab/browser is closed, across multiple
tabs

>
<2

* sessionStorage

* isolates data between tabs to prevent issues, data
also is lost when tab is closed

* IndexedDb
* Object-store structured database

* Create an object store with a key path (aka ID) or a
key generator

* Also supports indexes

* Transaction-scoped access: add, put (update), get,
delete

* All require JavaScript or NuGet JS wrappers to interact.
* Available in “Interactive Render Modes”

Persistent State: Server Storage

* MemoryCache
* Redis cache

* HybridCache

* Database

* Only available from “Interactive Server” or via
web API calls.

ddddd

Blazor Render Modes

+ {004 0000 00O
« I {00a
+ IDMMMM i 00 00
« 0 ! 00 a OOC
. . D01 [0

1 a OO

"2l Blazor Render Modes: Static Server

Render

gmn W Emm LB B —

Server

(Asp.NET Core) COmponentS

Get Request I
Form Post

Serve | HTML " . . .
 “Traditional” server-side web

* Only static HTML, CSS, and JS files
Browser * Single-render and form post-backs
* No interactive updates via C# (can still use JS)

* Great for blog posts and simple forms

. Blazor Render Modes: Interactive Server

r"‘-_A—I-“ﬁ-

SignalR 2-way Communication

e Continuous websocket
connection with SignalR

* Fast on first load

* Live data-binding, real-time
updates, JavaScript interop

* Direct access to server data
store

. Blazor Render Modes: Interactive Server

=

SignalR 2-way Communication

* State Challenges
» Session reconnect
 Distributed sites
e Data size limits
* Network lag

"2l Blazor Render Modes: Interactive WebAssembly

Download .NET Runtime

Server Client
(Asp.NET Core) (WebAssembly)

- s

HttpClient Web API Calls
SignalR, gRPC

* Runs in the client browser

) Lérge/SIOW.ﬁrs.t l0ad . e Fast interactions after load
* Live data-binding, real-time

updates, JavaScript interop * Closest in approach to most

* HttpClient calls to communicate JS SPA frameworks
with server web API

* Single-threaded

"ZIJ Blazor Render Modes: Interactive WebAssembly
Download .NET Runtime

Server Client
(Asp.NET Core) (wasm)

- s

Web API Call

* State Challenges
* Data sync

* New data object IDs before syncing
* (Use Guids)

Blazor Render Modes: Interactive Auto & (i, oy
= W e

* On first load, runs Interactive Server (SignalR)

* Downloads .NET runtime and client Wasm code
in the background

* On next load, switches to running from
WebAssembly
* “Best of both worlds”
* Fast start on first load (server)
* More responsive and robust interactions
(client)

¥ . Requires flexible data handling/abstraction to
- handle both client and server modes

Razor Component Lifecycle: Static Server Mode

4 N

Property Injection

Parent
Renders
Render

Onlnitialized(Async)

\ Does not

Subsequent

DOM
Updates

OnParametersSet(Async)
Renders

I I I I I I I I I I I I I I
Form Post or Navigation

State set in Oninitialized and OnParametersSet should be Idempotent

Razor Component Lifecycle: Interactive Modes

DOM

|
Events I
Parent S U I
roperty In n
Renders OPErty TNJECHO
I Bind to
Events
Onlnitialized(Async) I
\ Does not I
DOM d

Subsequent Updates

OnParametersSet(Async)
Renders

C D

Don't set state that will cause a render cycle in OnAfterRender/

ddddd

Architectural Patterns for State Management

- {000 0 000 00 OO0 OOCOOCO00T 0000 00 O OO0 O m o
OO0 OO0 O

- Wm0 dMWI00Ms &U
« 6l a [I OO0OOII0a ééa
| [MboC/0Ma &/ 00a &/
- . MITOOO00 000000 O o0momT 000 00 oo oo

OO0 000000 OOmnoo o 0 O OO0 [Oomm 00mooa oo
0 0001 00 00000 OO0 o0 mm

-/ Architectural Patterns for State Management

* Goals for Blazor State Management
* Flexible components that will work in both Interactive Server and
Interactive WebAssembly modes

* Reduced boilerplate logic like pass-through methods
* (eg., clientComponent => clientService => webApi => webService => dataRepository)

 Consistent patterns for communication between components

* Abstract away communication from WebAssembly client to Server
* Keep pages and components lightweight and easy to read

* Allow generic implementations for simple use cases

-/ Architectural Patterns for State Management

1 MVSM™

User

Interact

v * Model

Bindz‘:gilields ° View
— » State Manager
N 7“ * Model and View designed to work together

with two-way binding
LR * Model can live in either the View or the State
Transactions Manager class
(' '\ + State Manager is responsible for abstracting
transport and any data transformation

State Manager

Database
1Y Persistent
Storage

Cache
Fast Access

dev up

M SERVER BROWSER

ServerStateManager H pata ‘. WebAssembly
Repository Client
I Load
|
RazorComponentPage
X API Delete StateComponentBase
il Save
* SignalR Client Fields & Properties
PageModel
RazorComponenPage . St:?leRecord
StateComponentBase Methods
RedoStack | Redo
Fields & Properties
UndoStack L= Undo
PageModel
: StateRecord
Methods Save IndexedDb .
RedoStack | Redo
I Load
UndoStack [Z] undo
| Track Changes

Delete

Delete

ClientStateManager

El save

Delete

=] Track Changes

dev up

™ SERVER

Fetch Data for Client

API

SignalR Client

RazorComponenPage
StateComponentBase

R i,
Fields & Properties =
PageModel
: StateRecord
Methods
ufum| RedoStack jumjumng Redo %
| UndoStack e Undo fmmmgu®
Delete
Save
Load
Track Changes .
00000000 0

I
ServerStateManager
| [ead
Delete m
Save mm

Delete from Cache

Save to Cache First

Check Cache First

WebAssembly
Client

RazorComponentPage

StateComponentBase

Fields & Properties

PageModel

StateRecord

RedoStack

UndoStack

Methods

| Redo

Undo

Save

| Load

Track Changes

Delete

BROWSER

ClientStateManager

Save

Delete

Load

dev up

-
SERVER BROWSER

S
R

S H Dpata
Repository

ServerStateManager

WebAssembly
Client

[

Load

ammmmmmmmmmmmmnnnnFeteh Data for Clientommmmmmmmmmmmmmmns

i o

—-: & API ! I!” L L L L L L L L e (LT S Delete fulnmie S RazorComponentPage
M g StateComponentBase
E Pass on Requests =
ZA L L L L L ety) s
From Client Save hmfummmn® :
= S0
” SignalR Client = | £ [Fields & Properties B
5 PageModel g
RazorComponenPage 5 : StateRecord g
StateComponentBase s | £ Methods H
S | Sujm| RedoStack |miumng| [Redo
Fields & Properties z
% siulim| UndoStack |juuumgunnum =] Undo g
PageModel =
: StateRecord 5 s B pen Save to Cache Firstiny
Methods N 3 | Save ([0 T TS S
RedoStack] Redo = | Z
Fnngungmmmmmmng| ([Load g
Wtz fncc 1 S [S—— A I———
| Track Changes b
§ Delete | L Sunjun -
H H ClientStateManager
Save e e
i Zifinim Save
Load z
! T Delete
| Track Changes
E‘IH SO T T T T T T T T T T E TN O Y Load junm
HttpClient G S eneGheck Gache Firs oo s
ittpClient Put/P:

ittpClient Del.

dev up

™ SERVER

ServerStateManager

Anfinnigps | 1T T

Load

summmmmmmnnuFeteh Data for Clientummmmmmmmmmmmummm

0000000000000 00

=L

a Delete Jujinmnns

Pass on Requests
T T O T A 1)

T
From Client Save huifiniinn@r

SignalR Client

RazorComponenPage
StateComponentBase

R T T T T T

Fields & Properties

PageModel
StateRecord
Methods
nfue| RedoStack jumfummngs Redo

UndoStack fufumugunms| F=] Undo g

Delete

Save

Load

=] Track Changes

i,

QT T T

= T

Repository

Delete from Cache

Save to Cache First

BROWSER

WebAssembly
Client

RazorComponentPage

; StateComponeniBase %
i Fields & Properties E E
E PageModel E
E StateRecord i
E Methods g
E RedoStack jujmung [=] Redo %
E #u| UndoStack | Undo pmmmmmgis ;
= | [—————— -
E I Save §b JITITTS ;
S G Load = £
(D |§|m| QT ummm; I
| Track Changes M, s E
‘.M..EH. i s Delete from Cachennn®
Delete |, g
H ClientStateManager
e
i Save

IndexedDb

|

Delete

ittpClient Get

iCheck Cache Firsbmmmmmmmmimnmmmm i s

Load i

ittpClient Put/P

ittpClient Del

Check Cache First

Review
<

&= Core Concepts of State Management <V
\ * Definition: State management involves tracking the dynamic
data of a user interface—across components, sessions, and
storage layers.

> cascading values, DI services, etc.

* User/Session State: Stored in browser memory (e.g.,
localStorage, sessionStorage, indexedDb), usually not
synced with the server.
* Persistent State: Long-term data stored in a database
or API.

Types of State:
* Component State. Temporary, lost on refresh or
navigation.
Application State: Shared across components using

Review

S
%
<2

Blazor Render Modes & Their State Implications
 Static Server Mode:
e Simple form submission and HTML rendering.
* Limited interactivity and no real-time state updates.
* Persistence tools: cookies, tokens, query strings.
* Interactive Server Mode:
* Real-time two-way binding using SignalR.
* Enables in-memory server-side tracking and real-time updates.

* Challenges: reconnection handling, distributed server sync.
Interactive WebAssembly Mode:
* Fully client-side execution.
* Rich interactivity with flexible state control
* _.Risks of state desynchronization and ID conflicts for new data.
* Interactive Auto Mode:
* Hybrid approach: server-rendered first load, client-side on reload.
* Balances fast startup with responsive interactivity.

Review
<

s ® Patterns for Binding & Application State Sharing

+ Binding: <
* @bind, @bind:event, @bind:get/set, and @bind:after allow
seamless two-way data binding in Razor.
 Component Communication:
* Parameters, CascadingValues, EventCallbacks, and DI
Services are used to maintain shared state and coordination.

& Browser Storage Techniques
* [ocalStorage and sessionStorage:
* Simple key-value stores for persistence.
* IndexedDb:
* Structured object store with indexing and transaction
support. Can be wrapped with JS + C# logic or NuGet
packages.

. Review
@ Architectural Patterns for Blazor <
* MVU: Immutable, Redux-style, but not ideal for Blazor’s <
reactive capabilities.
MVVM: Familiar in .NET but verbose; Blazor doesn’t require
INotlfyPropertyChanged
MVC: Suited for non-interactive, server-rendered apps—

less effective in Blazor.

ﬂ‘ MVSM™ — A Blazor-Centric Pattern
ModeI-Vlew-State Manager:
Two-way binding between View and Model
State Manager handles all data transport, persistence,
and API| abstraction.
* Designed for extensibility using generics, reflection,
and browser storage.

https://nation-finder.geoblazor.com

Find the country based on its outline

Thank you to our Sponsors! </U

SYLLOGISTEKS /&> ArchitectNow
Milek
BB Microsoft 0
B Azure

umbraco

HUNTER

Engineering Company.

erler

time, spent wisely.”

Thank You! () dymaptic

Notes & Links @
https://timpurdum.dev

	Slide 1: Blazor State Management
	Slide 2: Goals of the Session
	Slide 3: What is Blazor?
	Slide 4: Bl zing Shipments
	Slide 5: What is State Management?
	Slide 6: Types of State in Web Development
	Slide 7: Component State
	Slide 8: Component State
	Slide 9: Application State
	Slide 10: Application State: Parameters
	Slide 11: Application State: Cascading Values
	Slide 12: Application State: EventCallbacks
	Slide 13: Application State: Service Classes
	Slide 14: User/Session State
	Slide 15: User/Session State
	Slide 16: Persistent State: Browser Storage
	Slide 17: Persistent State: Server Storage
	Slide 18: Blazor Render Modes
	Slide 19: Blazor Render Modes: Static Server
	Slide 20: Blazor Render Modes: Interactive Server
	Slide 21: Blazor Render Modes: Interactive Server
	Slide 22: Blazor Render Modes: Interactive WebAssembly
	Slide 23: Blazor Render Modes: Interactive WebAssembly
	Slide 24
	Slide 25: Razor Component Lifecycle: Static Server Mode
	Slide 26: Razor Component Lifecycle: Interactive Modes
	Slide 27: Architectural Patterns for State Management
	Slide 28
	Slide 29: Architectural Patterns for State Management
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34: Review
	Slide 35: Review
	Slide 36: Review
	Slide 37: Review
	Slide 38: https://nation-finder.geoblazor.com
	Slide 39
	Slide 40: Thank You! Notes & Links @ https://timpurdum.dev

