State Management in Blazor.

Tim Purdam
Director of Product Development;

@

Level: Beginnér

EXPERT SOLUTIONS FOR ENTERPSE DEVELOPERS

-) ‘ Artificial Cloud & Cybersecuri "‘
Visual Studio @ ~ DataPlatformd@ TELHMENTOR intelligence@® Containers @ &YRansorgwgre@ j_

6 ALAIT AN OMMILIS AN O

Session Survey

Your feedback is very important to us

Please take a moment to complete the session
survey found in the mobile app

Use the QR code or search for “Converge360
Events” in your app store Elﬁ [w]

Find this session on the Agenda tab
Click “Session Evaluation”
Thank you!

EEEEEEEEEEEEEEEEEEEEEEEEE

Goals of the Session

* Identify types of state management in Blazor and the tools and patterns
used

* Learn about how the Blazor rendering modes and render cycles impact
state management

* Identify larger architectural patterns and practical examples for
managing state in a Blazor application

G LIVE!
< 360

What is Blazor?

* Modern full-stack web framework

* Built on Asp.NET Core and Modern .NET
* Released with .NET Core 3.1 in 2018

* Component-based reactive framework

* Static and dynamic Server-Side
rendering

* Client WebAssembly SPA applications
or individual components

* High productivity with a single unifying
language and framework

TECH EVENTS WITH PERSPEC T‘.’}.

Blezing
Shipments

As we look at this web app, consider the following questions:

* Where are the pages being rendered?

* How does it know what data to load?

* Are the pages comprised of a single component, or many?
* How does the site respond to user interaction?

If we needed to store data, where would we store it?

What is State Management?

« “State management refers to the management of the
state of one or more user interface controls such as text

fields, submit buttons, radio buttons, etc. in a graphical
user interface.”
* from Wikipedia (based on redux.js.org)

Types of State in Web Development

* Component State
* Application State

* User/Session State
* Persistent State

Component State

» Stored in component fields/properties or a model object
* Bound to HTML input and display elements

* Unsaved changes are lost on navigation/refresh

p role="status">Current count: @currentCount</p
button class="btn btn-primary
@onclick="IncrementCount”>Click me</button

@code {

private int currentCount = 0;

private void IncrementCount() => currentCount++;

Component State

* Custom razor syntax for binding
<input type="text" @bind="fieldOrProp" />

* fires with the onchange event

. Change the event with @bind:event="oninput"

* Add a change handler method with @bind:after="HandlerMethod"

* For Razor Components, the syntax changes to bind to
parameters: <TestComponent @bind-ParameterName="fieldOrProp" />

e Can also use @bind:get="value“@bind:set="HandlerMethod”

Application State

* State shared across components using
* Parameters

* CascadingValues
e EventCallbacks
 Service Classes

G LIVE!
< 360

Application State: Parameters

* C# public properties with [Parameter] attribute on a child component

MapView.razor

[Parameter]

? Latitude { get; set; }

[Parameter]
? Longitude { get; set; }

* In consuming (parent) class markup, parameters display like HTML
attributes with capital letters

<MapView Latitude="@shipment.Latitude" Longitude="@shipment.Longitude">
<Map>
<Basemap>

<BasemapStyle Name="BasemapStyleName.ArcgisStreets"/>
</Basemap>

</Man> — LIVE!
</MapView> 360

1 PE

Application State: Cascading Values

* Wrap child components with markup tags

<CascadingValue Value=" @User" Name="CurrentUser">

<ProfileSelector />
</CascadingValue>

* All descendant components can receive the values as
properties with the [CascadingParameter] attribute

[CascadingParameter(Name="CurrentUser")]

public ApplicationUser? CurrentUser { get; set; }

* Cascading values can also be defined globally in the
Dependency Injection startup code.

builder.Services.AddCascadingValue("HomeCompany", sp => new Company { Id =1, Name = "Home" });

QJ LIVE!
= 360

Application State: EventCallbacks
* A type of Parameter

* Async-supporting Event triggers

[Parameter]

public EventCallback<LayerViewCreateEvent> OnlLayerViewCreate { get; set; }
* Bind to a parent component method instead of field or property

<MapView OnlLayerViewCreate="OnLayerViewCreate">
<Map>
<FeatureLayer OutFields="@(["*"])">
<Portalltem Portalltemld="234d2e3f6f554e0e84757662469c26d3" />
</Featurelayer>

</Map> private async Task OnlLayerViewCreate(LayerViewCreateEvent createEvent)

</Extent> {
</ MapView> if (createEvent.Layer is Featurelayer)

{

// query the feature service

}
}

Application State: EventCallbacks

* Parent components may receive changes (2-way binding) from a
parameter

InputText.razor

[Parameter]
? Value { get; set; }

[Parameter]
EventCallback<string> ValueChanged { get; set; }

Parent.razor

<InputText @bind-Value=“boundField”></ InputText>

7

G LIVE!

TECH EVENTS WITH

RSPECTIVE

1 PE

Application State: Service Classes

* Any C# Class can be injected via Property Injection
* In Razor Markup &) ——

StateManagementService StateManagementService

* OrinC# @ {

[Inject]

StateManagementService? StateManager { get; set; }

* Allows offloading State Management logic from Pages and
Components

* Share state between Components

* Use traditional .NET events/EventHandlers to notify different
components about changes

G LIVE!
= 360

User/Session State

e Authentication
* Authorization
* Profile

* Records

* Work Progress

User/Session State

* Browser Persistence
* Query String https://blazingshipments.com?id=12345
 Tokens
* Cookies
* localStorage

* sessionStorage
* indexedDb

 Server Persistence
* Persistent Cache (e.g., Redis)
e Database

Persistent State: Browser Storage <

<

* localStorage
* persists when tab/browser is closed, across multiple
tabs
* sessionStorage

* isolates data between tabs to prevent issues, data
also is lost when tab is closed

* IndexedDb
* Object-store structured database

* Create an object store with a key path (aka ID) or a
key generator

* Also supports indexes

* Transaction-scoped access: add, put (update), get,
delete

* All require JavaScript or NuGet JS wrappers to interact.
* Available in “Interactive Render Modes”

Persistent State: Server Storage

* MemoryCache
* Redis cache

* HybridCache

* Database

* Only available from “Interactive Server” or
via web API calls.

Blazor Component Render Modes

e Static Server Mode
* Interactive Server Mode
* Interactive WebAssembly Mode

* Interactive Auto Mode
* Blazor Hybrid *

* technically a “Blazor Hosting Model”, not a render mode

Blazor
Hybrid
(MAUI)

Blazor Render Modes: Static Server

Render

gmn W Emm LB B —

Server

(Asp.NET Core) COmponentS

Get Request I
Form Post

I Serve | HTML * “Traditional” server-side web, similar to ASP
\ classic, WebForms, MVC, and Razor Pages

\ * Only static HTML, CSS, and JS files are sent to

the client
Browser

* Supports a single-render and form post-backs
* No interactive updates via C# (can still use JS)

Blazor Render Modes: Static Server (cont.)

Render

gmn W Emm LB B —

Server

(Asp.NET Core) Components

Get Request I
Form Post

|

\
\

* Original Blazor lifecycle functionality is limited

* Does not cal [EEereuel method

* Bindings and C# event handlers with @ (e.g.,

Browser) will not update

* Good for blog posts, help pages, or other read-
only content and simple forms

GLIVE!

< 360

EEEEEEEEEEEEEEEEEEEEEEEEEE

Serve | HTML

Blazor Render Modes: Interactive Server

SignalR 2-way Communication ® Continuous websocket
connection between client
and server with SignalR

* Live data-binding, real-time
updates, JavaScript interop

* Direct access to server data
store

* Fast on first load
* Can introduce network lag

Blazor Render Modes: Interactive
WebAssembly

Download .NET Runtime

Server Client
(Asp.NET Core) (WebAssembly)

- s

HttpClient Web API Calls .
SignalR, gRPC * Larger download == slower first load

e Runs in the client browser Faster interactions after first load (no

, . , network latency on events)
* Live data-binding, real-time updates,

JavaScript interop * Closest in approach to most JS SPA

. , . frameworks
» HttpClient calls to communicate with

server web API * Available in the hosted Blazor Web App

and standalone WebAssembly projects G LIVE!
/ 360

TECH EVENTS WITH PERSPECTIVE

* Single-threaded

» n‘

Blazor Render Modes: Interactive Auto & ¢ Ne
*ol I o —
= — NN

* On first load, runs from server, creating SignalR

connection

* In the background, downloads .NET runtime
and client code

* On next load, switches to running from
WebAssembly
* “Best of both worlds”
* Fast start on first load (server)
* More responsive and robust interactions
Q@ (client)

- * Requires flexible data handling/abstraction to
handle both client and server modes

Blazor Hybrid

* Runs in a WebView in .NET MAUI
(iI0S, Android, Mac, Windows), WPF,
or Windows Forms

* Native .NET multi-threaded code
execution (not WebAssembly)

* Access to device APIs (GPS,
Bluetooth, photos, etc.)

Blazor Hybrid (MAUI)

* Can reuse components or entire Ul

applications between web, desktop, // n

and mobile

* Always interactive, fires JoRINEEEREEREETS
* Does not require defining

TECH EVENTS WITH PERSPECTIVE

Razor Component Lifecycle: Static Server Mode

4 N

Property Injection

Parent
Renders
Render

Onlnitialized(Async)

\ Does not

Subsequent

DOM
Updates

OnParametersSet(Async)
Renders

I I I I I I I I I I I I I I
Form Post or Navigation

G LIVE!
< 360

State set in Onlinitialized and OnParametersSet should be Idempotent

Razor Component Lifecycle: Interactive Modes

DOM
Events

Parent

Property Injection
Renders perty i

Bind to
Events

Onlnitialized(Async)

\ Does not

Subsequent

DOM
Updates

L I

OnParametersSet(Async)
Renders

C D G LIVE!

Don’t set state that will cause a render cycle in OnAfterRender! i

Architectural Patterns for State Management

* Some frameworks encourage you to manage state in
a specific pattern

 React — Flux/Redux/MVU
« XAML Frameworks - MVVM
* Asp.NET Core MVC - ...MVC
* Blazor does not have a "default" named architectural

pattern, but the decisions we make still impact how
we manage the user and application state

>,
QJ LIVE!
.. 360

Architectural Patterns for State Management

* Goals for Blazor State Management
* Flexible components that will work in both Interactive Server and

Interactive WebAssembly modes

Reduced boilerplate logic like pass-through methods

(e.g., clientComponent => clientService => webApi => webService =>
dataRepository)

* Consistent patterns for communication between components
Abstract away communication from WebAssembly client to Server
Keep pages and components lightweight and easy to read

Allow generic implementations for simple use cases

Q/ LIVE!
= 360

Architectural Patterns for State Management

1 MVSM™

User

Interact

v * Model

View
Bind:‘:gilields * Vlew
N * State Manager

Sa;: 7ad * Model and View designed to work together
with two-way binding

State Manager

) * Model can live in either the View or the
Handles All Data &
Transactions State Manager class
(' '\ » State Manager is responsible for
abstracting transport and any data
Database .
1Y Persistent Cache tl’anSfOI‘matlon

Siotage Fast Access Q) LIVE!
= 360

Server Component

Browser

Component

Statel\/lanager

ININ ,

DbContext HybridCache

cue

Client Component

Component
ClientStateManager

Browser

HttpClient StateMgtAPI

4 \ Y 4 \ Y

ServerStateManager
| oge 4 \ Y

DbContext HybridCache
I Y, i\
Server

Client Component

Component

Server Component ClientStateManager

Component StateMgtAPI

StateManager ServerStateManager

In both cases, the Component only ever has one
consistent IStateManager interface to interact with G

EEEEEEEEEEEEEEEEEEEEEEEEE

It Doesn’t Have to Be This Generic...

* This is just one idea of how to organize and abstract Blazor
state across components and render modes

* You don’t have to use these generic interfaces/base classes.
Sometimes that abstraction is overkill if you only have a
handful of data types to deal with, or it just doesn’t fit if your
data is manipulated in unique ways.

* Takeaways
* Make a data service interface that can be injected into any

component

* Make a server implementation with straightforward db
access

* Make a client implementation with HttpClient and a Minimal
Web API

* You can re-use the server implementation as the service for
the web API to access the db

Check out https://samples.geoblazor.com

 Fully interactive application samples
written in C# and Razor

e Each page is written to run in both
Client and Server mode (live sample is
Client mode)

* GeoBlazor library utilizes JSRuntime to
interact with the ArcGIS Maps SDK for
JavaScript, so GeoBlazor users don’t
have to switch to JavaScript

\)GeoBlazor

Session Survey

* Your feedback is very important to us

* Please take a moment to complete the session survey
found in the mobile app

* Use the QR code or search for “Converge360 Events” in

your app store
OfF40

* Find this session on the Agenda tab
* Click “Session Evaluation”

* Thank you! [w]

L%

|
Thank You! \)

Notes & Links @
https://timpurdum.dev

é

: : , Artificial Cloud &
Visual Studio @) ~ DataPlatformd@ TECHMENTOR ntelligence@@ Containers@@® &Ranso _mwfgre @

Cybersecuri

	Slide 1
	Slide 2: Session Survey
	Slide 3: Goals of the Session
	Slide 4: What is Blazor?
	Slide 5: Bl zing Shipments
	Slide 6: What is State Management?
	Slide 7: Types of State in Web Development
	Slide 8: Component State
	Slide 9: Component State
	Slide 10: Application State
	Slide 11: Application State: Parameters
	Slide 12: Application State: Cascading Values
	Slide 13: Application State: EventCallbacks
	Slide 14: Application State: EventCallbacks
	Slide 15: Application State: Service Classes
	Slide 16: User/Session State
	Slide 17: User/Session State
	Slide 18: Persistent State: Browser Storage
	Slide 19: Persistent State: Server Storage
	Slide 20: Blazor Component Render Modes
	Slide 21: Blazor Render Modes: Static Server
	Slide 22: Blazor Render Modes: Static Server (cont.)
	Slide 23: Blazor Render Modes: Interactive Server
	Slide 24: Blazor Render Modes: Interactive WebAssembly
	Slide 25
	Slide 26: Blazor Hybrid
	Slide 27: Razor Component Lifecycle: Static Server Mode
	Slide 28: Razor Component Lifecycle: Interactive Modes
	Slide 29: Architectural Patterns for State Management
	Slide 30
	Slide 31: Architectural Patterns for State Management
	Slide 32: Server Component
	Slide 33: Client Component
	Slide 34: Server Component
	Slide 35: It Doesn’t Have to Be This Generic…
	Slide 36: Check out https://samples.geoblazor.com
	Slide 37: Session Survey
	Slide 38

