
Blazor State Management
Managing User Data Across Client and Server

Tim Purdum

Tech Bash

November, 2025

• Identify types of state management in Blazor and the tools and patterns
used

• Learn about how the Blazor rendering modes and render cycles impact
state management

• Identify larger architectural patterns and practical examples for
managing state in a Blazor application

Goals of the Session

• Modern full-stack web framework

• Built on Asp.NET Core and Modern
.NET

• Released with .NET Core 3.1 in
2018

• Component-based reactive
framework

• Static and dynamic Server-Side
rendering

• Client WebAssembly SPA
applications or individual
components

• High productivity with a single
unifying language and framework

What is Blazor?

Bl zing
Shipments

As we look at this web app, consider the following questions:

• Where are the pages being rendered?

• How does it know what data to load?

• Are the pages comprised of a single component, or many?

• How does the site respond to user interaction?

• If we needed to store data, where would we store it?

What is State Management?

• “State management refers to the management of the
state of one or more user interface controls such as text
fields, submit buttons, radio buttons, etc. in a graphical
user interface.”

• from Wikipedia (based on redux.js.org)

Types of State in Web Development

• Component State

• Application State

• User/Session State

• Persistent State

Component State

• Stored in component fields/properties or a model object

• Bound to HTML input and display elements

• Unsaved changes are lost on navigation/refresh

<p role="status">Current count: @currentCount</p>

<button class="btn btn-primary"

 @onclick="IncrementCount">Click me</button>

@code {

 private int currentCount = 0;

 private void IncrementCount() => currentCount++;

}

• Custom razor syntax for binding

• fires with the onchange event

• Change the event with

• Add a change handler method with

• For Razor Components, the syntax changes to bind to

parameters:

Component State

<input type="text" @bind="fieldOrProp" />

@bind:event="oninput"

@bind:after="HandlerMethod"

<TestComponent @bind-ParameterName="fieldOrProp" />

Application State

• State shared across components using

• Parameters

• CascadingValues

• EventCallbacks

• Service Classes

• C# public properties with [Parameter] attribute on a child component

• In consuming (parent) class markup, parameters display like HTML
attributes with capital letters

Application State: Parameters

MapView.razor

/// <summary>
/// The Latitude for the Center
point of the view
/// </summary>
[Parameter]
public double? Latitude { get; set; }

/// <summary>
/// The Longitude for the Center
point of the view
/// </summary>
[Parameter]
public double? Longitude { get; set; }

<MapView Latitude="@shipment.Latitude" Longitude="@shipment.Longitude">
 <Map>
 <Basemap>
 <BasemapStyle Name="BasemapStyleName.ArcgisStreets"/>
 </Basemap>
 </Map>
</MapView>

MapView.razor

[Parameter]
public double? Latitude { get; set; }

[Parameter]
public double? Longitude { get; set; }

• Wrap child components with markup tags

• All descendant components can receive the values as
properties with the [CascadingParameter] attribute

Application State: Cascading Values

<CascadingValue Value=" @User" Name="CurrentUser">
 <ProfileSelector />
</CascadingValue>

[CascadingParameter(Name="CurrentUser")]
public ApplicationUser? CurrentUser { get; set; }

• A type of Parameter

• Async-supporting Event triggers

• Bind to a parent component method instead of field or property

Application State: EventCallbacks

[Parameter]
public EventCallback<LayerViewCreateEvent> OnLayerViewCreate { get; set; }

<MapView OnLayerViewCreate="OnLayerViewCreate">
 <Map>
 <FeatureLayer OutFields="@(["*"])">
 <PortalItem PortalItemId="234d2e3f6f554e0e84757662469c26d3" />
 </FeatureLayer>
 </Map>
 </Extent>
</ MapView>

private async Task OnLayerViewCreate(LayerViewCreateEvent createEvent)
{
 if (createEvent.Layer is FeatureLayer)
 {
 // query the feature service
 }
}

• Any C# Class can be injected via Property Injection

• In Razor Markup

• Or in C#

• Allows offloading State Management logic from Pages and
Components

• Share state between Components

• Use traditional .NET events/EventHandlers to notify different
components about changes

Application State: Service Classes

@code {
[Inject]

private StateManagementService? StateManager { get; set; }
}

@page "/order"
@inject StateManagementService StateManagementService

User/Session State

• Authentication

• Authorization

• Profile

• Records

• Work Progress

User/Session State

• Browser Persistence

• Query String https://blazingshipments.com?id=12345

• Tokens

• Cookies

• localStorage

• sessionStorage

• indexedDb

• Server Persistence

• Persistent Cache (e.g., Redis)

• Database

• localStorage
• persists when tab/browser is closed, across multiple

tabs

• sessionStorage
• isolates data between tabs to prevent issues, data

also is lost when tab is closed

• IndexedDb
• Object-store structured database
• Create an object store with a key path (aka ID) or a

key generator
• Also supports indexes
• Transaction-scoped access: add, put (update), get,

delete

• All require JavaScript or NuGet JS wrappers to interact.

• Available in “Interactive Render Modes”

Persistent State: Browser Storage

•MemoryCache

• Redis cache

• HybridCache

• Database

•Only available from “Interactive Server” or
via web API calls.

Persistent State: Server Storage

• Static Server Mode

• Interactive Server Mode

• Interactive WebAssembly Mode

• Interactive Auto Mode

• Blazor Hybrid *
* technically a “Blazor Hosting Model”, not a render mode

Blazor Component Render Modes

Blazor Render Modes: Static Server

• “Traditional” server-side web, similar to ASP
classic, WebForms, MVC, and Razor Pages

• Only static HTML, CSS, and JS files are sent to
the client

• Supports a single-render and form post-backs

• No interactive updates via C# (can still use JS)

Server
(Asp.NET Core) Pages Components

Browser

Render

Get Request

Form Post

Serve HTML

Blazor Render Modes: Static Server (cont.)

• Original Blazor lifecycle functionality is limited

• Does not call method

• Bindings and C# event handlers with @ (e.g.,
) will not update

• Good for blog posts, help pages, or other read-
only content and simple forms

Server
(Asp.NET Core) Pages Components

Browser

Render

Get Request

Form Post

Serve HTML

OnAfterRender{Async}

@onclick="() => counter++"

Blazor Render Modes: Interactive Server

• Continuous websocket
connection between client
and server with SignalR

• Live data-binding, real-time
updates, JavaScript interop

• Direct access to server data
store

• Fast on first load

• Can introduce network lag

Server
(Asp.NET Core) Pages Components

Browser

SignalR 2-way Communication

Blazor Render Modes: Interactive
WebAssembly

• Runs in the client browser

• Live data-binding, real-time

updates, JavaScript interop

• HttpClient calls to communicate

with server web API

• Single-threaded

Server
(Asp.NET Core) Pages Components

HttpClient Web API Calls

SignalR, gRPC

Download .NET Runtime

Client
(WebAssembly)

• Larger download == slower first load

• Faster interactions after first load (no

network latency on events)

• Closest in approach to most JS SPA

frameworks

• Available in the hosted Blazor Web App

and standalone WebAssembly projects

Blazor Render Modes: Interactive Auto

• On first load, runs from server, creating SignalR
connection

• In the background, downloads .NET runtime
and client code

• On next load, switches to running from
WebAssembly

• “Best of both worlds”

• Fast start on first load (server)

• More responsive and robust interactions
(client)

• Requires flexible data handling/abstraction to
handle both client and server modes

Blazor Hybrid

• Runs in a WebView in .NET MAUI
(iOS, Android, Mac, Windows), WPF,
or Windows Forms

• Native .NET multi-threaded code
execution (not WebAssembly)

• Access to device APIs (GPS,
Bluetooth, photos, etc.)

• Can reuse components or entire UI
applications between web, desktop,
and mobile

• Always interactive, fires

• Does not require defining @rendermode

OnAfterRender{Async}

Razor Component Lifecycle: Static Server Mode

Parent
Renders

First Render

Property Injection

OnInitialized(Async)

Render

OnParametersSet(Async)

Subsequent

Renders

DOM
Updates

Does not await

Form Post or Navigation

State set in OnInitialized and OnParametersSet should be Idempotent

Razor Component Lifecycle: Interactive Modes

Parent
Renders

First Render

Property Injection

OnInitialized(Async)

Render

OnParametersSet(Async)

Subsequent

Renders

OnAfterRender(Async)

DOM
Events

DOM
Updates

Does not await

Bind to
Events

Don’t set state that will cause a render cycle in OnAfterRender!

• Some frameworks encourage you to manage state in
a specific pattern

• React – Flux/Redux/MVU

• XAML Frameworks – MVVM

• Asp.NET Core MVC – …MVC

• Blazor does not have a "default" named architectural
pattern, but the decisions we make still impact how
we manage the user and application state

Architectural Patterns for State Management

• Goals for Blazor State Management
• Flexible components that will work in both Interactive Server and

Interactive WebAssembly modes

• Reduced boilerplate logic like pass-through methods
• (e.g., clientComponent => clientService => webApi => webService => dataRepository)

• Consistent patterns for communication between components

• Abstract away communication from WebAssembly client to Server

• Keep pages and components lightweight and easy to read

• Allow generic implementations for simple use cases

Architectural Patterns for State Management

• Model

• View

• State Manager
• Model and View designed to work together

with two-way binding

• Model can live in either the View or the

State Manager class

• State Manager is responsible for

abstracting transport and any data

transformation

Architectural Patterns for State Management

MVSM

Server Component

Server

DbContext HybridCache

StateManager

Component

Browser

DI DIDI

DI DI

DI

SignalR

Fn Fn

Fn

Client Component

Server

DbContext HybridCache

StateMgtAPI

Browser

StateManager

Component

DI DI

DI DI

DI

SignalR

Fn Fn

HttpClient

DI

Grpc

Fn

Server Component

Server

DbContext HybridCache

StateManager

Component

Browser

Server

DbContext HybridCache

StateMgtAPI

Browser

StateManager

Component

Client Component

In both cases, the Component only ever has one
consistent IStateManager interface to interact with

Review

 Core Concepts of State Management

• Definition: State management involves tracking the

dynamic data of a user interface—across components,

sessions, and storage layers.

• Types of State:

• Component State: Temporary, lost on refresh or

navigation.

• Application State: Shared across components using

cascading values, DI services, etc.

• User/Session State: Stored in browser memory (e.g.,

localStorage, sessionStorage, indexedDb), usually not

synced with the server.

• Persistent State: Long-term data stored in a database or

API.

Review
 Blazor Render Modes & Their State Implications

• Static Server Mode:
• Simple form submission and HTML rendering.
• Limited interactivity and no real-time state updates.
• Persistence tools: cookies, tokens, query strings.

• Interactive Server Mode:
• Real-time two-way binding using SignalR.
• Enables in-memory server-side tracking and real-time

updates.
• Challenges: reconnection handling, distributed server sync.

• Interactive WebAssembly Mode:
• Fully client-side execution.
• Rich interactivity with flexible state control
• .Risks of state desynchronization and ID conflicts for new

data.
• Interactive Auto Mode:

• Hybrid approach: server-rendered first load, client-side on
reload.

• Balances fast startup with responsive interactivity.

Review
 Patterns for Binding & Application State Sharing

• Binding:

• @bind, @bind:event, @bind:get/set, and @bind:after allow

seamless two-way data binding in Razor.

• Component Communication:

• Parameters, CascadingValues, EventCallbacks, and DI Services

are used to maintain shared state and coordination.

 Browser Storage Techniques

• localStorage and sessionStorage:

• Simple key-value stores for persistence.

• IndexedDb:

• Structured object store with indexing and transaction

support. Can be wrapped with JS + C# logic or NuGet

packages.

Review
 Architectural Patterns for Blazor

• MVU: Immutable, Redux-style, but not ideal for Blazor’s

reactive capabilities.

• MVVM: Familiar in .NET but verbose; Blazor doesn’t require

INotifyPropertyChanged.

• MVC: Suited for non-interactive, server-rendered apps—

less effective in Blazor.

 MVSM – A Blazor-Centric Pattern

• Model-View-State Manager:

• Two-way binding between View and Model

• .State Manager handles all data transport, persistence,

and API abstraction.

• Designed for extensibility using generics, reflection, and

browser storage.

• Fully interactive application samples
written in C# and Razor

• Each page is written to run in both
Client and Server mode (live sample is
Client mode)

• GeoBlazor library utilizes JSRuntime to
interact with the ArcGIS Maps SDK for
JavaScript, so GeoBlazor users don’t
have to switch to JavaScript

Check out https://samples.geoblazor.com

Thank You!

Notes & Links @
https://timpurdum.dev

	Slide 1: Blazor State Management
	Slide 2: Goals of the Session
	Slide 3: What is Blazor?
	Slide 4: Bl zing Shipments
	Slide 5: What is State Management?
	Slide 6: Types of State in Web Development
	Slide 7: Component State
	Slide 8: Component State
	Slide 9: Application State
	Slide 10: Application State: Parameters
	Slide 11: Application State: Cascading Values
	Slide 12: Application State: EventCallbacks
	Slide 13: Application State: Service Classes
	Slide 14: User/Session State
	Slide 15: User/Session State
	Slide 16: Persistent State: Browser Storage
	Slide 17: Persistent State: Server Storage
	Slide 18: Blazor Component Render Modes
	Slide 19: Blazor Render Modes: Static Server
	Slide 20: Blazor Render Modes: Static Server (cont.)
	Slide 21: Blazor Render Modes: Interactive Server
	Slide 22: Blazor Render Modes: Interactive WebAssembly
	Slide 23
	Slide 24: Blazor Hybrid
	Slide 25: Razor Component Lifecycle: Static Server Mode
	Slide 26: Razor Component Lifecycle: Interactive Modes
	Slide 27: Architectural Patterns for State Management
	Slide 28
	Slide 29: Architectural Patterns for State Management
	Slide 30: Server Component
	Slide 31: Client Component
	Slide 32: Server Component
	Slide 33: Review
	Slide 34: Review
	Slide 35: Review
	Slide 36: Review
	Slide 37: Check out https://samples.geoblazor.com
	Slide 38: Thank You! Notes & Links @ https://timpurdum.dev

