@ dymaptic

Blazor State Management

Managing User Data Across Client and Server

Tim Purdum
Tech Bash

@ techbash November, 2025

®
° - . . O X State and Loca .
esrl rrrrrrrrrrrrrr N4 Eer Partner Conference Federal Small Business UL ArcGIS Hub w Nonprofit 2" Government O NED
Gold ¥ Specialty PYag] Specialty Specialty Specialty vV

CERTIFIED BY | [yt s svvsmssne

Goals of the Session

* Identify types of state management in Blazor and the tools and patterns
used

* Learn about how the Blazor rendering modes and render cycles impact
state management

* Identify larger architectural patterns and practical examples for
managing state in a Blazor application

What is Blazor?

e Modern full-stack web framework

* Built on Asp.NET Core and Modern
NET

* Released with .NET Core 3.1 in
2018

 Component-based reactive
framework

Hello, world!
Welcome to your new app.

* Static and dynamic Server-Side
rendering

* Client WebAssembly SPA
applications or individual
components

* High productivity with a single
unifying language and framework

Blexing

Shipments

As we look at this web app, consider the following questions:

* Where are the pages being rendered?

* How does it know what data to load?

* Are the pages comprised of a single component, or many?
* How does the site respond to user interaction?

If we needed to store data, where would we store it?

@ techbash

What is State Management?

« “State management refers to the management of the
state of one or more user interface controls such as text

fields, submit buttons, radio buttons, etc. in a graphical

user interface.”
* from Wikipedia (based on redux.js.org)

@ techbash
Types of State in Web Development

* Component State
* Application State

* User/Session State
* Persistent State

& techbash

Component State

» Stored in component fields/properties or a model object
* Bound to HTML input and display elements

* Unsaved changes are lost on navigation/refresh

p role="status">Current count: @currentCount</p
button class="btn btn-primary
@onclick="IncrementCount”>Click me</button
@code {
private int currentCount = 0;

private void IncrementCount() => currentCount++;

-

>
<<

W®»
|\

@ techbash

Component State

* Custom razor syntax for binding
<input type="text" @bind="fieldOrProp" />

* fires with the onchange event

. Change the event with @bind:event="oninput"

* Add a change handler method with @bind:after="HandlerMethod"

* For Razor Components, the syntax changes to bind to
parameters: <testComponent @bind-ParameterName="fieldOrProp" />

Application State

* State shared across components using
* Parameters

* CascadingValues
e EventCallbacks
 Service Classes

Application State: Parameters

* C# public properties with [Parameter] attribute on a child component

MapView.razor

[Parameter]

? Latitude { get; set; }

[Parameter]

? Longitude { get; set; }

* In consuming (parent) class markup, parameters display like HTML
attributes with capital letters

<MapView Latitude="@shipment.Latitude" Longitude="@shipment.Longitude">
<Map>
<Basemap>

<BasemapStyle Name="BasemapStyleName.ArcgisStreets"/>
</Basemap>
</Map>
</MapView>

Application State: Cascading Values

* Wrap child components with markup tags

<CascadingValue Value=" @User" Name="CurrentUser">
<ProfileSelector />
</CascadingValue>

* All descendant components can receive the values as
properties with the [CascadingParameter] attribute

[CascadingParameter(Name="CurrentUser")]
ApplicationUser? CurrentUser { get; set; }

Application State: EventCallbacks

* A type of Parameter
* Async-supporting Event triggers

[Parameter]
public EventCallback<LayerViewCreateEvent> OnlLayerViewCreate { get; set; }

* Bind to a parent component method instead of field or property

<MapView OnlLayerViewCreate="OnLayerViewCreate">
<Map>
<FeatureLayer OutFields="@(["*"])">
<Portalltem Portalltemld="234d2e3f6f554e0e84757662469c26d3" />
</Featurelayer>

</Map> private async Task OnlLayerViewCreate(LayerViewCreateEvent createEvent)

</Extent> {
</ MapView> if (createEvent.Layer is Featurelayer)

{

// query the feature service

}
}

Application State: Service Classes

* Any C# Class can be injected via Property Injection
* In Razor Markup &) ——

StateManagementService StateManagementService

* OrinC# @ {

[Inject]

StateManagementService? StateManager { get; set; }

* Allows offloading State Management logic from Pages and
Components

* Share state between Components

* Use traditional .NET events/EventHandlers to notify different
components about changes

@ techbash

User/Session State

e Authentication
* Authorization
* Profile

* Records

* Work Progress

@ techbash

User/Session State

* Browser Persistence
* Query String https://blazingshipments.com?id=12345
* Tokens
* Cookies
* localStorage

* sessionStorage
* indexedDb

* Server Persistence
* Persistent Cache (e.g., Redis)
e Database

Persistent State: Browser Storage @ techbash

* localStorage
* persists when tab/browser is closed, across multiple
tabs
* sessionStorage

* isolates data between tabs to prevent issues, data
also is lost when tab is closed

* IndexedDb
* Object-store structured database

* Create an object store with a key path (aka ID) or a
key generator

* Also supports indexes

* Transaction-scoped access: add, put (update), get,
delete

* All require JavaScript or NuGet JS wrappers to interact.
* Available in “Interactive Render Modes”

Persistent State: Server Storage @techbash

* MemoryCache
* Redis cache

* HybridCache

* Database

* Only available from “Interactive Server” or
via web API calls.

& techbash

Blazor Component Render Modes

e Static Server Mode
* Interactive Server Mode
* Interactive WebAssembly Mode

* Interactive Auto Mode
* Blazor Hybrid *

* technically a “Blazor Hosting Model”, not a render mode

Blazor
Hybrid
(MAUI)

Blazor Render Modes: Static Server

Render

gmn W Emm LB B —

Server

(Asp.NET Core) Components

Get Request I
Form Post

|

\
\

* “Traditional” server-side web, similar to ASP
classic, WebForms, MVC, and Razor Pages

* Only static HTML, CSS, and JS files are sent to
the client

Serve | HTML

Browser
* Supports a single-render and form post-backs

* No interactive updates via C# (can still use JS)

Blazor Render Modes: Static Server (cont.)

Render

gmn W Emm LB B —

Server

(Asp.NET Core) Comp0nent5

Get Request I
Form Post

|

\
\

* Original Blazor lifecycle functionality is limited

* Does not cal [EEereuel method

* Bindings and C# event handlers with @ (e.g.,
@ ="() => counter++") will not update

Serve | HTML

Browser

* Good for blog posts, help pages, or other read-
only content and simple forms

Blazor Render Modes: Interactive Server

=

SignalR 2-way Communication ® Continuous websocket
connection between client
and server with SignalR

* Live data-binding, real-time
updates, JavaScript interop

* Direct access to server data
store

* Fast on first load
* Can introduce network lag @techbash

Blazor Render Modes: Interactive
WebAssembly

Download .NET Runtime

Server Client
(Asp.NET Core) (WebAssembly)

- s

HttpClient Web API Calls
SignalR, gRPC

* Runs in the client browser * Faster interactions after first load (no
network latency on events)

* Larger download == slower first load

* Live data-binding, real-time
updates, JavaScript interop

Closest in approach to most JS SPA

* HttpClient calls to communicate frameworks

with server web AP Available in the hosted Blazor Web App
* Single-threaded and standalone WebAssembly projects

¥
>

Blazor Render Modes: Interactive Auto @ B =20

-y A
* On first load, runs from server, creating SignalR
connection

* In the background, downloads .NET runtime
and client code

* On next load, switches to running from
WebAssembly
* “Best of both worlds”
* Fast start on first load (server)
* More responsive and robust interactions
(client)

* Requires flexible data handling/abstraction to & techbash
handle both client and server modes

Blazor Hybrid

* Runs in a WebView in .NET MAUI
(iI0S, Android, Mac, Windows), WPF,
or Windows Forms

* Native .NET multi-threaded code
execution (not WebAssembly)

* Access to device APIs (GPS,
Bluetooth, photos, etc.)

Blazor Hybrid (MAUI)
* Can reuse components or entire Ul n

applications between web, desktop,
and mobile

anlnl
A~

* Always interactive, 11¢=<] OnAfterRender{Async}

Razor Component Lifecycle: Static Server Mode

4 N

Property Injection

Parent
Renders
Render

Onlnitialized(Async)

\ Does not

Subsequent

DOM
Updates

OnParametersSet(Async)
Renders

I I I I I I I I I I I I I I
Form Post or Navigation

State set in Onlinitialized and OnParametersSet should be Idempotent

Razor Component Lifecycle: Interactive Modes

DOM
Events

Parent
Renders

Property Injection

I Bind to
Events

Onlnitialized(Async) I

\ Does not

Subsequent

DIOL\Y d

Updates
OnParametersSet(Async)

Renders

C D

Don'’t set state that will cause a render cycle in OnAfterRender!

Architectural Patterns for State Management

* Some frameworks encourage you to manage state in
a specific pattern

 React — Flux/Redux/MVU
« XAML Frameworks - MVVM
* Asp.NET Core MVC - ...MVC
 Blazor does not have a "default" named architectural

pattern, but the decisions we make still impact how
we manage the user and application state

Architectural Patterns for State Management

* Goals for Blazor State Management

Flexible components that will work in both Interactive Server and

Interactive WebAssembly modes
Reduced boilerplate logic like pass-through methods

(e.g., clientComponent => clientService => webApi => webService => dataRepository)
Consistent patterns for communication between components
Abstract away communication from WebAssembly client to Server
Keep pages and components lightweight and easy to read
Allow generic implementations for simple use cases

Architectural Patterns for State Management

1 MVSM™

User

Interact

v * Model

Bindz‘t(:)gilields ° View
— » State Manager
Saf 7“ * Model and View designed to work together

with two-way binding
) * Model can live in either the View or the
Handles All Data &
Transactions State Manager class
(' '\ » State Manager is responsible for
abstracting transport and any data
Database

1Y Persistent Cache tl"anSfOI‘mation
Storse Fast Access @tech baSh

State Manager

Server Component

Browser

Com ponent

Statel\/lanager

INOIN .

DbContext HybridCache

Client Component

Component

StateManager
Browser

HttpClient StateMgtAP| Grpc

/\ Y ,
TN
_/

Server

Client Component

Server Component Component

StateManager StateMgtAPI

In both cases, the Component only ever has one
consistent IStateManager interface to interact with

Review & techbash

@ Core Concepts of State Management

* Definition: State management involves tracking the
dynamic data of a user interface—across components,
sessions, and storage layers.

* Types of State:

* Component State: Temporary, lost on refresh or
navigation.

* Application State: Shared across components using
cascading values, DI services, etc.

* User/Session State: Stored in browser memory (e.g.,
localStorage, sessionStorage, indexedDb), usually not
synced with the server.

* Persistent State: Long-term data stored in a database or
API.

& techbash

Blazor Render Modes & Their State Implications <
« Static Server Mode: <V
* Simple form submission and HTML rendering.
* Limited interactivity and no real-time state updates.
* Persistence tools: cookies, tokens, query strings.
* Interactive Server Mode:
* Real-time two-way binding using SignalR.
* Enables in-memory server-side tracking and real-time
updates.
* Challenges: reconnection handling, distributed server sync.
* Interactive WebAssembly Mode:
* Fully client-side execution.
* Rich interactivity with flexible state control
* .Risks of state desynchronization and ID conflicts for new
data.
* Interactive Auto Mode:
* Hybrid approach: server-rendered first load, client-side on
reload.

L[] L] [] [] []
a DAalamanc~ fAamd ~davdiim taridlh vAacmim A imn e tv 7 tomd A o~y rodey s

Review

& techbash

Review

¥ Patterns for Binding & Application State Sharing <
* Binding: <
* @bind, @bind:event, @bind:get/set, and @bind:after allow
seamless two-way data binding in Razor.
* Component Communication:
* Parameters, CascadingValues, EventCallbacks, and DI Services
are used to maintain shared state and coordination.

& Browser Storage Techniques
* JlocalStorage and sessionStorage:
* Simple key-value stores for persistence.
* IndexedDb:
* Structured object store with indexing and transaction
support. Can be wrapped with JS + C# logic or NuGet
packages.

& techbash

@ Architectural Patterns for Blazor <

* MVU: Immutable, Redux-style, but not ideal for Blazor’s D
reactive capabilities.

* MVVM: Familiar in .NET but verbose; Blazor doesn’t require
INotifyPropertyChanged.

* MVC: Suited for non-interactive, server-rendered apps—
less effective in Blazor.

Review

¥ MVSM™ _ A Blazor-Centric Pattern
* Model-View-State Manager:
* Two-way binding between View and Model
* .State Manager handles all data transport, persistence,
and APl abstraction.
* Designed for extensibility using generics, reflection, and
browser storage.

Check out https://samples.geoblazor.com

 Fully interactive application samples
written in C# and Razor

e Each page is written to run in both
Client and Server mode (live sample is
Client mode)

* GeoBlazor library utilizes JSRuntime to
interact with the ArcGIS Maps SDK for
JavaScript, so GeoBlazor users don’t
have to switch to JavaScript

@GeoBlazor

nnnnnn

Thank You! (3}) dymaptic

Notes & Links @
https://timpurdum.dev

& techbash

@GeoBlazor

	Slide 1: Blazor State Management
	Slide 2: Goals of the Session
	Slide 3: What is Blazor?
	Slide 4: Bl zing Shipments
	Slide 5: What is State Management?
	Slide 6: Types of State in Web Development
	Slide 7: Component State
	Slide 8: Component State
	Slide 9: Application State
	Slide 10: Application State: Parameters
	Slide 11: Application State: Cascading Values
	Slide 12: Application State: EventCallbacks
	Slide 13: Application State: Service Classes
	Slide 14: User/Session State
	Slide 15: User/Session State
	Slide 16: Persistent State: Browser Storage
	Slide 17: Persistent State: Server Storage
	Slide 18: Blazor Component Render Modes
	Slide 19: Blazor Render Modes: Static Server
	Slide 20: Blazor Render Modes: Static Server (cont.)
	Slide 21: Blazor Render Modes: Interactive Server
	Slide 22: Blazor Render Modes: Interactive WebAssembly
	Slide 23
	Slide 24: Blazor Hybrid
	Slide 25: Razor Component Lifecycle: Static Server Mode
	Slide 26: Razor Component Lifecycle: Interactive Modes
	Slide 27: Architectural Patterns for State Management
	Slide 28
	Slide 29: Architectural Patterns for State Management
	Slide 30: Server Component
	Slide 31: Client Component
	Slide 32: Server Component
	Slide 33: Review
	Slide 34: Review
	Slide 35: Review
	Slide 36: Review
	Slide 37: Check out https://samples.geoblazor.com
	Slide 38: Thank You! Notes & Links @ https://timpurdum.dev

